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Abstract
A multi-shell generalization of a fermion representation of the q-deformed
compact symplectic spq(4) algebra is introduced. An analytic form for
the action of two or more generators of the Spq(4) symmetry on the basis
states is determined and the result used to derive formulae for the overlap
between number-preserving states as well as for matrix elements of a model
Hamiltonian. A second-order operator in the generators of Spq(4) is identified
that is diagonal in the basis set and that reduces to the Casimir invariant of the
sp(4) algebra in the non-deformed limit of the theory. The results can be used in
nuclear structure applications to calculate β-decay transition probabilities and
to provide for a description of pairing and higher-order interactions in systems
with nucleons occupying more than a single-j orbital.

PACS numbers: 02.20.−a, 21.60.Cs

1. Introduction

The symplectic sp(4) algebra, which is isomorphic to so(5) [1–3], has been successfully used
for a description of pairing correlations when two types of particles are taken into account
[4, 5]. The algebra can be generalized to multiple levels [2, 6, 7] so the particles can occupy
more than a single orbit. When applied to nuclear structure, this generalization of the sp(4)
algebra makes a study of nuclei with mass numbers 56 < A < 100 possible.

An additional degree of freedom can be introduced through a q-deformation of the classical
sp(4) Lie algebra [8, 9]. While this preserves the underlying symmetry, it introduces non-
linear terms into the theory. In contrast with the usual formulation of q-deformation for
the symplectic sp(4) algebra and its su(2) subalgebras that is normally used in mathematical
studies [10–12] and in nuclear physics applications [13–15], we have discovered a new
formulation that depends upon the dimensionality of the underlying space [16]. Because of
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this dependence, a generalization of the q-deformed symplectic spq(4) algebra to a multi-orbit
case is an interesting exercise that introduces new elements into the theory.

To apply the q-deformed theory (single level or multiple orbit) to real physical systems,
the action of the generators of Spq(4) on the basis states must be known. We have derived
an analytical form for accomplishing this. The results can be used to build a q-deformed
analogue of the second-order Casimir invariant of the sp(4) algebra. The results also provide
for analytical matrix elements of a model interaction and therefore for an exact solution of
the corresponding Hamiltonian problem. The results are what is needed for nuclear structure
applications and an investigation into the physical significance of q-deformation.

2. Generalized sp(4) algebra and its q-deformed extension

The multi-shell generalization of the fermion realization of sp(q)(4) follows the single-j
construction of the algebra [16]. The sp(4) algebra, which is isomorphic to so(5), is realized
in terms of creation and annihilation fermion operators c

†
j,m,σ and cj,m,σ , which describe a

particle of type σ (= ±1 for protons/neutrons) in a state of total angular momentum j (half
integer) with a third projection m (−j � m � j). For a given σ, the dimension of the
fermion space is 2� = ∑

j 2�j = ∑
j (2j + 1), where the sum

∑
j is over all orbits that are

considered to be active.
The deformation of the spq(4) algebra is introduced in terms of q-deformed creation and

annihilation operators α
†
j,m,σ and αj,m,σ ,

(
α
†
j,m,σ

)∗ = αj,m,σ , where α
(†)
j,m,σ → c

(†)
j,m,σ in the

limit q → 1. The deformed single-particle operators are defined through their anticommutation
relation for every j, σ and m in a similar way as for the single-level problem [16]{
αj,σ,m, α

†
j,σ,m′

}
±1 = q± Nσ

2� δm,m′
{
αj,σ,m, α

†
j ′,σ ′,m′

} = 0 σ �= σ ′ j �= j ′{
α
†
j,σ,m, α

†
j ′,σ ′,m′

} = 0 {αj,σ,m, αj ′,σ ′,m′ } = 0
(1)

where the two Cartan generators Nσ = ∑
j

∑j

m=−j c
†
j,m,σ cj,m,σ count the number of particles

of each type σ and by definition the q-anticommutator is given as {A,B}k = AB + qkBA.

In the deformed case a pair of fermions can be created
(
F0,±1

q→1→ A0,±1
)

or destroyed(
G0,±1

q→1→ B0,±1
)

by the operators:

Fσ+σ ′
2

= 1√
2�(1 + δσ,σ ′)

∑
j

j∑
m=−j

(−1)j−m α
†
j,m,σ α

†
j,−m,σ ′ (2)

Gσ+σ ′
2

= 1√
2�(1 + δσ,σ ′)

∑
j

j∑
m=−j

(−1)j−m αj,−m,σ αj,m,σ ′ (3)

where F0,±1 = (G0,±1)
†. The number-preserving Weyl generators are defined as

T+ = 1√
2�

∑
j

j∑
m=−j

α
†
j,m,1 αj,m,−1 T− = 1√

2�

∑
j

j∑
m=−j

α
†
j,m,−1 αj,m,1 (4)

where
(
T±

q→1→ τ±
)
. In addition to the Cartan generators N±1 (or their linear combinations

N = N+1 + N−1 and T0 ≡ τ0 = (N+1 − N−1)/2), the operators (2)–(4) close on the
q-deformed spq(4) algebra and their non-deformed counterparts close on the sp(4) algebra. In
physical applications, the number generators N±1 along with the total number of particles N
and the third projection T0 (of the operator with two other components T±), represent physical
observables, which are always non-deformed.
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In the deformed and non-deformed cases, the generators (2)–(4) are related to the

corresponding single-level operators X(j) as X = ∑
j

√
�j√
�

X(j), where X = {F,G, T } or

X
q→1= {A,B, τ }. In the non-deformed limit, the ten operators A

(j)

0,±1, B
(j)

0,±1, τ
(j)

0,± and N(j)

close on the sp(j)(4) algebra for each j -level and the direct sum holds, sp(4) = ⊕
j sp(j)(4).

A different situation occurs in the deformed case, where the single-level generators do not

close within the sp
(j)
q (4) algebra

(
e.g.

[
T

(j)
+ , T

(j)
−

] �= [
2 T

(j)

0
2�j

])
but rather within the generalized

spq(4) algebra, since

[
T

(j)
+ , T

(j)
−

] =
[

2
T0

2�

] [
F

(j)

0 ,G
(j)

0

] =
[
N − 2�

2�

] [
F

(j)

±1 ,G
(j)

±1

] = ρ±

[
N±1 − �

�

]

where by definition [X]k = qkX − q−kX

qk − q−k and ρ± = q±1 + q
± 1

2�

2 . The rest of the commutation

relations remain within the single-j q-deformed algebra, for example
[
T

(j)

0 , T
(j)
±

] = ±T
(j)
± .

However, several of these relations, such as
[
T

(j)

l , F
(j)

0

]
[2]
2

= 1
2
√

�j

F
(j)

l

(
q

N−l
2� +q− N−l

2�

)
, l = ±1,

include a multiplicative q-factor with a dependence on the averaged multi-level number,
N±1/(2�). This behaviour of sp

(j)
q (4) can be traced back to the generalized q-deformation

(1), where the anticommutation relations of two fermions on a single-j level depend on the
total number of particles of one kind averaged over the multi-shell space. Another interesting
consequence of (1) is the single-j q-deformed quantity∑

m

α
†
j,σ,m αj,σ,m = 2�j

[
Nσ

2�

]
σ = ±1. (5)

In the non-deformed limit, the left-hand side of (5) represents the single-level number operator
N

(j)
σ , while in the deformed extension the zeroth approximation of (5) gives an even distribution

of the particles over the entire multi-level space weighed by the single-j dimension. In this
way, the q-deformation for the generalized spq(4) algebra introduces probability features at
the constituent single-j levels of the theory.

In the deformed case (as in the ‘classical’ case), each finite representation is spanned by
completely paired states, which are constructed as pairs of fermions coupled to a total angular
momentum and parity Jπ = 0+ [17],

|n1, n0, n−1)q = (F1)
n1(F0)

n0(F−1)
n−1 |0〉 (6)

where F0,±1 are defined in (2) and n1, n0, n−1 are the total numbers of pairs of each kind,
(σ, σ ′) = (+ +), (+ −), (−−), respectively. The basis states (6) in a multiple-orbit space of
dimension 2� is a linear combination of the single-level basis states which depend on what
pairs occupy which levels [18, 19].

The states (6) are eigenvectors of the total number operators N±1 with eigenvalues N±,
where N± = 2n±1 + n0. Both N and τ0 (T0) are diagonal in the basis (6) with eigenvalues
n = 2(n1 + n−1 + n0) and i = n1 − n−1, respectively. While the single-j fermion number
operators N

(j)

±1 project onto the single-level basis, the q-deformed analogue (5) is diagonal in
the basis (6) with eigenvalue 2�j

[ 2nσ + n0
2�

]
, σ = ±1.

The generalized model has the same symmetry properties as the single-level realization
of the theory [16]. All formulae that are constructed in terms of commutation relations
of the single-level generators (such as the action of a group generator on the basis states,
Casimir invariants, eigenvalues, normalization coefficients of the basis vectors) coincide at the
algebraic level and have the same form under the substitution �j → �. The three important
reduction limits of the spq(4) algebra to uq(2) are summarized in table 1 with the eigenvalues
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Table 1. Reduction limits of the spq(4) algebra, µ = {T , 0,±}.
Eigenvalues

u
µ
q (2) Generators C1(u

µ
q (2)) C2(su

µ
q (2)) Basis states

uT
q (2) T±, T0; N

n = 2n1 +
2n−1 + 2n0

2�
[ 1

2�

]
[T ] 1

2�
[T + 1] 1

2�
|n, T , i〉

u0
q (2)

F0, G0,
N − 2�

2 ; T0
i = n1 − n−1

2�
[ 1

2�

] [
2� − 2(n1 + n−1)

2

]
1

2�

×
[

2� − 2(n1 + n−1)

2 + 1
]

1
2�

|n1, n0, 0)

|0, n0, n−1)

u±
q (2)

F±1, G±1,
N±1 − �

2 ; N∓1
2n∓1 + n0 ρ±�

[ 1
�

] [
� − n0

2

]
1
�

[
�−n0

2 + 1
]

1
�

|n1, 0, n−1)

|n1, 1, n−1)

of the first- and second-order Casimir invariants and the basis states given for each limit. Also,
the q-deformed symplectic algebra reverts back to the ‘classical’ limit when q → 1.

For nuclear structure applications we use the set of commutation relations that is symmetric
with respect to the exchange q ↔ q−1 [16]. The q-coefficients, 	lk(Np), obtained in [16] for
the following commutation relations

[Tl, Y±k] = ±Y±l±k	±1(N±k)

2[2]
√

�
l, k �= 0

[Fl,G−k] = Tl+k	|l|−|k|(Nl−k)

2[2]
√

�
l + k �= 0

(where Y = F(G) for the ‘+’ (‘−’) case) can be written in a compact way as

	±1(Np) = 2
√

ρ+ρ−
[
2Np±1/2−�

]
1

2�

=
{
	l0(Np)

	0k(Np)
(7)

where we define [2X] 1
2�

≡ [2X] 1
2�

[X] 1
2�

= q
X
2� + q− X

2�
q→1→ 2.

3. Action of first- and second-order operators on the basis vectors

In addition to a generalization of the spq(4) algebra to multi-j shells, an algebraic form for
the action of the product of two or more generators of the symplectic symmetry can be given.
This allows one to calculate the overlaps between states in a number-preserving sequence, to
build a q-deformed second-order diagonal operator in terms of all ten generators of Spq(4),
and to obtain the matrix elements of a model Hamiltonian.

3.1. The suT
q (2) limit

In the q-deformed case, the commutators of the raising (lowering) T± operator with the
pair creation operators, (F∓)n∓1 and (F0)

n0 , which enter into the construction of the basis
states (6), are

[T±, (F∓)n∓1 ] = F0(F∓)n∓1−1
√

ρ+ρ−√
�[2]

[n∓1] 1
2�

[
2N∓1+n∓1−1/2−�

]
1

2�

[T±, (F0)
n0 ]([2]

2 )
n0 = F±(F0)

n0−1 1

2
√

�

n0−1∑
p=0

[2]p

2p

[
2N∓1+n0−1−p

]
1

2�

.

(8)



Generalized q-deformed symplectic sp(4) algebra for multi-shell applications 7583

With the use of (8), the general formula for the action of the kth order product of T± on
the lowest (highest) weight basis state can be determined,

T k
±(F∓)n∓1 |0〉 =


k/2�∑
i=0

(√
ρ+ρ−√
�[2]

[
2n∓1− 1

2 −�

]
1

2�

)k−i [n∓1] 1
2�

!θ(k, i)

[n∓1 − k + i] 1
2�

!

× (F±)i(F0)
k−2i (F∓)n∓1−k+i |0〉 (9)

where k � n±1 and the functions in the sum are defined as

θ(k, 0) = 1,∀k

θ(k, i) =




θ(k − 1,i)

[
2

n∓1−i− 1
2 −�

]
1

2�[
2

n∓1− 1
2 −�

]
1

2�

+ θ(k − 1,i − 1)

2
√

�

∑k−2i
p=0

[2]p

2p [2k−2i−p] 1
2�

i � 
k/2�

0 i > 
k/2�
.

(10)

This implies that θ
(
k, k

2

) = θ

(
k − 1, k

2 − 1
)

√
�

when k is even. Starting from the lowest (highest)
weight basis state the action of the T± operator (9) gives all the number-preserving vectors
with a definite maximum value of the T quantum number. (Recall that for given n and i, T

takes the values T = ñ
2 , ñ

2 − 2, . . . , 2
⌈

i
2

⌉
, where ñ = min{n, 4� − n}.) The rest of the

vectors with lower T values and the same (n, i) quantum numbers can be found as independent
and orthogonal vectors to those constructed in (9).

In nuclear systems, the T± generators represent the raising and lowering isospin operators
and as such they generate β∓-decay transitions in an isobaric sequence. It follows that formula
(9) derived above is used extensively in the calculation of the strength of these transitions.
Also, the construction of the isospin states (9) allows one to compute overlaps with the pair
states (6) and with the eigenvectors of a model Hamiltonian.

3.2. Action of products of two generators on the basis states

We are also able to give an analytical form of the action of the anticommutator {T+, T−} =
T+T− + T−T+ on the basis states

{T+, T−}|n1, n0, n−1) = MT
−1,+2,−1

�
|n1 − 1, n0 + 2, n−1 − 1) +

MT
0,0,0

�
|n1, n0, n−1)

+
MT

+1,−2,+1

2�
|n1 + 1, n0 − 2, n−1 + 1) (11)

where the coefficients MT
n′

1,n
′
0,n

′
−1

(with n′
1, n

′
0, n

′
−1 indicating the number of pairs of each kind

added (+)/removed (−)) are q-deformed functions of the pair numbers given in terms of the
n−1, n0, n1 by

MT
−1,+2,−1 = 1

4[2]2
{	(n0, n1 − 1)	(n0 + 1, n−1 − 1) + 	(n0, n−1 − 1)	(n0 + 1, n1 − 1)}

MT
0,0,0 = 1

4[2]
{�(n0 − 1)(	(n0 − 1, n1) + 	(n0 − 1, n−1))

+ �(n0)(	(n0, n1 − 1) + 	(n0, n−1 − 1))}
MT

+1,−2,+1 = �(n0 − 1)�(n0 − 2)

(12)
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where we define

�(n0) =
n0∑

k=0

[2]k

2k

[
2n0−k

]
1

2�

	(n0, n±1) = [n0 + 2n±1 + 1] 1
2�

− [n0 − 1] 1
2�

+ [n0 + 2n±1 + 2 − 2�] 1
2�

− [n0 − 2�] 1
2�

= 2
√

ρ+ρ−[n± + 1] 1
2�

[
2n0+n±+1/2−�

]
1

2�

.

(13)

The second expression of 	(n0, n±1) (13) allows the non-diagonal term that scatters two
identical particle pairs of opposite kinds into two non-identical particle pairs (12) to be
rewritten as

MT
−1,+2,−1 = ρ+ρ−

[2]2
[n1] 1

2�
[n−1] 1

2�

{[
2n0+n1−�− 1

2

]
1

2�

[
2n0+n−1−�+ 1

2

]
1

2�

+
[
2n0+n1−�+ 1

2

]
1

2�

[
2n0+n−1−�− 1

2

]
1

2�

}
. (14)

In a similar way, the action of the second-order product, F0G0, on the basis states yields
the following non-diagonal term

− 1

�
MP

−1,+2,−1 = − 1

�
ñ1ñ−1

= − ρ+ρ−
[2]2�

[n1] 1
2�

[n−1] 1
2�

[
2n1−�− 1

2

]
1

2�

[
2n−1−�− 1

2

]
1

2�

(15)

and for F+1G+1 + F−1G−1, it is

− 1

�
MP

+1,−2,+1 = − 1

�

√
ρ+ρ−
[2]

n0−1∑
k=1

Sq(k) (16)

where we define ñ±1 ≡ 1
2[2]

(
[2n±1 − 1] 1

2�
+ [2n±1 − 2�] 1

2�
+ [2�] 1

2�
+ 1

) =
1

[2]
√

ρ+ρ−[n±1] 1
2�

[
2n±1−�−1/2

]
1

2�

q→1→ n±1, and Sq(k) ≡ [2k−�−1/2] 1
2�

∑k−1
i=0

[2]i

2i [2k−1−i] 1
2�

q→1→ 4k [20]. The diagonal elements, MP
0,0,0, of F0G0 and F+1G+1 + F−1G−1 are discussed in

detail in [20].

3.3. Second-order operators

The analytical relations (12)–(16) allow us to find a q-deformed second-order operator,
O2(spq(4)), that is diagonal in the q-deformed basis and that in the limit when q goes to
one reverts to the second-order Casimir invariant of the sp(4) algebra [3, 16],

O2(spq(4)) = γ1

2
({F+1,G+1} + {F−1,G−1}) + γ0

C2
(
su0

q(2)
)

�
+

C2
(
suT

q (2)
)

�
(17)

where the γ -coefficients are q-functions of the pair numbers,

γ1 = MT
+1,−2,+1

2MP
+1,−2,+1

q→1→ 2

and

γ0 =
[
2n0+n1−�− 1

2

]
1

2�

[
2n0+n−1−�+ 1

2

]
1

2�

+
[
2n0+n1−�+ 1

2

]
1

2�

[
2n0+n−1−�− 1

2

]
1

2�

2
[
2n1−�− 1

2

]
1

2�

[
2n−1−�− 1

2

]
1

2�

q→1→ 1.
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The Casimir invariants in (17) are C2
(
suT

q (2)
) = �

({T+, T−} +
[

1
�

]
[T0]2

1
2�

)
and C2

(
su0

q(2)
) =

�
({F0,G0} +

[
1
�

][
N
2 − �

]2
1

2�

)
[16].

The second-order operator can be written in terms of the Casimir operators of all four
limits, {+,−, 0, T }, as

O2(spq(4)) =
∑

k=+,−,0,T

γk

C2
(
suk

q(2)
)

�
− γ1

2

[
2

�

] {
ρ+

[
N1 − �

2

]2

1
�

+ ρ−

[
N−1 − �

2

]2

1
�

}

(18)

where γ± ≡ γ1, γT ≡ 1 and C2
(
su±

q (2)
) = �

2

({F±1,G±1} + ρ±
[

2
�

][
N±1−�

2

]2
1
�

)
[16]. Its

eigenvalue in the basis set (6) (see table 1 and (12)–(16)) is

〈O2(spq(4))〉 = γ1(ρ+ + ρ−)

[
1

�

] [
� − n0

2

]
1
�

[
� − n0

2
+ 1

]
1
�

− γ1

2

[
2

�

] {
ρ+

[
2n+ + n0 − �

2

]2

1
�

+ ρ−

[
2n− + n0 − �

2

]2

1
�

}

+ 2γ0

[
1

2�

] [
2� − 2(n1 + n−1)

2

]
1

2�

[
2� − 2(n1 + n−1)

2
+ 1

]
1

2�

+
MT

0,0,0

�
+

[
1

�

]
[n1 − n−1]2

1
2�

q→1→ � + 3. (19)

The second-order operator (17) is a Casimir invariant only in the non-deformed limit of
the theory. In that limit its eigenvalue (� + 3) labels the Sp(4) representations. While an
explicit form for the second-order Casimir operator of spq(4) for other q-deformed schemes
can be given [12], this is not the case here because the scheme includes, by construction
[16], a dependence on the shell structure which is suitable for nuclear physics applications.
Nevertheless, the importance of the second-order operator (17) in the q-deformed case is
obvious. It is an operator that consists of number-preserving products of all ten q-deformed
group generators, and the pair basis states (6), which span the entire space for a given
Spq(4) representation, are its eigenvectors. Its zeroth-order approximation commutes with the
generators of the q-deformed symplectic symmetry, which means that only the higher-order
terms introduce a dependence on the quantum numbers that label the states. It also gives a
direct relation between the expectation values of the second-order products of the generators
that build O2(spq(4)).

The analytical formulae, which were derived above, are also used for finding the matrix
elements of the interaction in a system with symplectic dynamical symmetry. The model
Hamiltonian [20] is another second-order operator that is expressed in terms of the generators
of the Spq(4) group [16, 17]:

Hq = −ε̄qN − GqF0G0 − Fq(F+1G+1 + F−1G−1) − Eq

2�

(
C2

(
suT

q (2)
) − �

[
N

2�

])

−Cq2�

[
1

�

] ([
N

2
− �

]2

1
2�

− [�]2
1

2�

)
−

(
Dq − Eq

2�

)
�

[
1

�

]
[T0]2

1
2�

(20)

where εq = ε̄q +
(

1
2 − 2�

)
Cq + Dq

4 > 0 is the Fermi level of the system, Gq, Fq,Eq, Cq and
Dq are constant interaction strength parameters. The classical Hamiltonian, Hcl, is obtained in
the limit q → 1. For a nuclear system with N+ valence protons and N− valence neutrons, the
interaction represents proton–neutron and identical-particle isovector pairing (with Gq � 0
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and Fq � 0 strength parameters), a symmetry term (Eq), a diagonal proton–neutron isoscalar
force (Eq and Cq) [21, 22] and an isospin breaking term

(
Dq �= Eq

2�

)
. The quantum extension

of the sp(4) algebra introduces higher-order interactions and accounts for non-linear effects.
The q-deformed model can be applied to multi-j major shells, such as 1f5/22p1/22p3/21g9/2,
and is exactly solvable. The second-order diagonal operator O2(spq(4)) (17) sets a linear
dependence between the q-deformed pairing and symmetry energies, which allows for a
reduction of the number of phenomenological parameters in the Hamiltonian (20).

3.4. Boson approximation

Although the fermion generalization allows many j -orbitals to be considered, the dimension
of the space should not be allowed to grow too large because the effect of the deformation
diminishes as the size of the model space grows. For example, in the case of very
large � the anticommutation relation of the fermions (1) reduces to the simpler form{
αj,σ,m, α

†
j,σ,m′

}
q±1 = δm,m′ and all q-brackets [X] or [X] 1

(2)�
go to X when X is not a function

of �. In this limit the pair-operators obey boson commutations and a boson approximation
is achieved. The model Hamiltonian (20) is diagonal in the pair states and does not include
scattering between different kinds of bosons. In the limit of large � � {

N
2 , N±1

}
, the action

of the operators A ·B (F ·G) on the basis states counts the number of different kinds of bosons:
〈F0G0〉 counts the number of non-identical particle pairs and remains non-deformed; 〈F±G±〉
counts the number of identical particle pairs and only scales its non-deformed analogue by
a factor of 1 + q±1

2 . As another direct consequence of the dependence of the deformation on
the space dimension is that in this large � limit the direct product of the single-j quantum
symplectic algebras holds, spq(4) = ⊕

j sp
(j)
q (4), as for the non-deformed case for all �.

4. Conclusion

In this paper, we introduced a multi-shell extension of the quantum spq(4) algebra. While in
the non-deformed case this is a direct sum of the single-j symplectic sp

(j)
q (4) algebras, in the

deformed case a direct sum result is only achieved in a boson approximation of the theory that
is applicable in the large-space limit, � � {

N
2 , N±1

}
. The dependence of the deformation on

the dimensionality of the space makes the generalization unique and non-trivial.
We also derived an analytical solution for the action of the q-deformed raising and

lowering operators on the basis states. This, in turn, allows one to calculate the overlap between
number preserving states. It also makes the construction of q-deformed basis vectors with
a definite isospin value possible and allows one to calculate β-decay transition probabilities
between these states.

We were also able to obtain formulae for computing the action of the product of two
generators of the Spq(4) group on the basis states. From this we found a q-deformed second-
order operator in the group generators that is diagonal in the basis set with its zeroth-order
approximation commuting with all the Spq(4) generators. The results can also be used to
provide for an exact solutions of a q-deformed model Hamiltonian.
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